Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator.

نویسندگان

  • Amjad H Talukder
  • Anupama Gururaj
  • Sandip K Mishra
  • Ratna K Vadlamudi
  • Rakesh Kumar
چکیده

The transcriptional activity of estrogen receptor alpha (ER-alpha) is modified by regulatory action and interactions of coactivators and corepressors. Recent studies have shown that the metastasis-associated protein 1 (MTA1) represses estrogen receptor element (ERE)-driven transcription in breast cancer cells. With a yeast two-hybrid screen to clone MTA1-interacting proteins, we identified a known nuclear receptor coregulator (NRIF3) as an MTA1-binding protein. NRIF3 interacted with MTA1 both in vitro and in vivo. NRIF3 bound to the C-terminal region of MTA1, while MTA1 bound to the N-terminal region of NRIF3, containing one nuclear receptor interaction LXXLL motif. We showed that NRIF3 is an ER coactivator, hyperstimulated ER transactivation functions, and associated with the endogenous ER and its target gene promoter. MTA1 repressed NRIF3-mediated stimulation of ERE-driven transcription and interfered with NRIF3's association with the ER target gene chromatin. In addition, NRIF3 deregulation enhanced the responsiveness of breast cancer cells to estrogen-induced stimulation of growth and anchorage independence. Furthermore, we found that NRIF3 is an estrogen-inducible gene and activated ER associated with the ER response element in the NRIF3 gene promoter. These findings suggest that NRIF3, an MTA1-interacting protein, is an estrogen-inducible gene and that regulatory interactions between MTA1 and NRIF3 might be important in modulating the sensitivity of breast cancer cells to estrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NRIF3 is a novel coactivator mediating functional specificity of nuclear hormone receptors.

Many nuclear receptors are capable of recognizing similar DNA elements. The molecular event(s) underlying the functional specificities of these receptors (in regulating the expression of their native target genes) is a very important issue that remains poorly understood. Here we report the cloning and analysis of a novel nuclear receptor coactivator (designated NRIF3) that exhibits a distinct r...

متن کامل

Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR

Proline-, glutamic acid-, and leucine-rich protein (PELP)1, also known as modulator of nongenomic actions of the estrogen receptor (MNAR), is a novel nuclear receptor coregulator with a multitude of functions. PELP1/MNAR serves as a scaffolding protein that couples various signaling complexes with nuclear receptors and participates in genomic and nongenomic functions. Recent data suggest that P...

متن کامل

Tumor Cells Establishes a Growth-Promoting Autocrine Signal in Breast Coregulation of Estrogen Receptor by ERBB4/HER4

Although crosstalk between cell-surface and nuclear receptor signaling pathways has been implicated in the development and progression of endocrine-regulated cancers, evidence of direct coupling of these signaling pathways has remained elusive. Here we show that estrogen promotes an association between extranuclear estrogen receptor A (ER) and the epidermal growth factor receptor (EGFR) family ...

متن کامل

Coregulation of estrogen receptor by ERBB4/HER4 establishes a growth-promoting autocrine signal in breast tumor cells.

Although crosstalk between cell-surface and nuclear receptor signaling pathways has been implicated in the development and progression of endocrine-regulated cancers, evidence of direct coupling of these signaling pathways has remained elusive. Here we show that estrogen promotes an association between extranuclear estrogen receptor alpha (ER) and the epidermal growth factor receptor (EGFR) fam...

متن کامل

Identification of a novel pathway that selectively modulates apoptosis of breast cancer cells.

Expression of the nuclear receptor interacting factor 3 (NRIF3) coregulator in a wide variety of breast cancer cells selectively leads to rapid caspase-2-dependent apoptotic cell death. A novel death domain (DD1) was mapped to a 30-amino acid region of NRIF3. Because the cytotoxicity of NRIF3 and DD1 seems to be cell type-specific, these studies suggest that breast cancer cells contain a novel ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 15  شماره 

صفحات  -

تاریخ انتشار 2004